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Introduction
Inflammatory bowel disease (IBD) is a chronic inflammatory con-
dition of the gastrointestinal (GI) tract, subdivided into ulcerative 
colitis (UC) and Crohn’s disease (CD).1 IBD is associated with 
a range of complications that can significantly impact quality of 
life and health outcomes.2 The predominant symptoms—such as 
diarrhea, abdominal pain, GI bleeding, weight loss, malnutrition, 
and fatigue—can have substantial psychosocial consequences.3 
Other health complications include strictures, fistulas, abscesses, 
and an increased risk of colorectal cancer, particularly in patients 
with long-standing disease or extensive colonic involvement.4 Ex-
traintestinal manifestations, such as arthritis, skin disorders, and 

liver disease, further contribute to the burden of IBD, underscoring 
the need for comprehensive management strategies.5

Endoscopy remains the primary method for diagnosing IBD; 
however, it is invasive and time-consuming.6 Technologies such as 
artificial intelligence (AI), endocytoscopy, and molecular imaging 
have significantly enhanced endoscopic examinations, providing 
more accurate and detailed insights into IBD detection.7 AI im-
proves risk prediction, genetic data analysis, and disease severity 
assessment through image analysis.8 Endoscopic molecular imag-
ing offers valuable insights by assessing disease severity, predict-
ing treatment outcomes, and detecting dysplasia even in inflamed 
tissue.6 While endocytoscopy provides highly detailed, real-time 
microscopic views of tissue during an endoscopy, with magnifica-
tion up to 1,400 times,9 these advances still highlight the need for 
non-invasive diagnostic methods.

In IBD, immune system dysregulation drives disease progres-
sion through inflammatory mediators that perpetuate local in-
flammation, alter gut permeability, and result in gut dysbiosis.10 
Employing gut microbiota and their metabolite biomarkers, which 
are characteristic of the disease, appears to be a promising non-
invasive approach for diagnosis and monitoring. This strategy can 
aid in early detection and prediction of IBD, enabling timely inter-
ventions and reducing the risk of complications.11 This highlights 
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the crucial, multifunctional role of various biomarkers in IBD, 
which can be utilized for diagnosis, treatment planning, and as-
sessing mucosal healing in patients.12 This review examines the 
complex interplay among gut dysbiosis, metabolite alterations, and 
immunological responses in IBD. It seeks to clarify the mecha-
nisms through which alterations in the gut microbiome and its 
related metabolites contribute to IBD development, emphasizing 
specific microbial signatures, metabolomic changes, and immune 
biomarkers associated with disease activity, progression, and treat-
ment response. Furthermore, it discusses the emerging roles of AI 
and machine learning (ML) in the diagnosis, management, and 
personalized treatment of IBD. Through this integrative analysis, 
the article aims to enhance our understanding of IBD’s multifacto-
rial nature and identify potential avenues for future research and 
clinical application.

Global burden and prevalence
Over the past few decades, the global burden of IBD has been ris-
ing, largely driven by changes in environmental, genetic, and life-
style factors. Between 1990 and 2019, the global IBD population 
increased substantially, rising from 3.3 million to 4.9 million,13 
with China and the United States reporting the highest numbers of 
cases.14 A 2019 study revealed that rates of IBD occurrence, deaths, 
and disability-adjusted life years were higher in older individuals 
compared to younger ones. Interestingly, men generally exhibited 
higher rates for these indicators than women until approximately 
85 years of age, after which women had higher rates.15 The study 
also found that the highest number of IBD cases occurred in the 
50–54-year age group for women and the 60–64-year age group 
for men. Additionally, the mortality rate associated with IBD was 
highest among individuals aged 95 years and older.13 Individuals 
with a family history of IBD, particularly CD, have a significantly 
increased risk of developing the condition. Siblings of CD patients 
are 13 to 36 times more likely to develop IBD, while those with 
a sibling affected by UC have a seven- to seventeen-fold higher 
risk. The presence of multiple affected family members further 
elevates this risk, especially in children. Offspring of two IBD-
affected parents face the highest risk, ranging from 33% to 52%.16 
A comprehensive analysis of 491 studies demonstrated a dramatic 
increase in both CD and UC rates over the past century. Incidence 
rates for CD and UC surged from fewer than one to over nine and 
fourteen cases per 100,000 people, respectively, with significantly 
rising prevalence trends.17 In 2021, a study in Iran analyzed the 
cost of illness, including medical treatments and other expenses, 
for IBD and found the annual cost per patient to be $1,077 for 
UC and $1,608 for CD. Patients over 40 years of age incurred the 
highest costs, with nationwide totals reaching $8.2 million for UC 
and $7.1 million for CD.18 A 2022 European study involving 3,687 
IBD patients across 12 countries found that disease costs varied 
based on factors such as disease type, activity, comorbidities, age, 
gender, country, and healthcare system characteristics. UC patients 
generally had higher costs, particularly for medication.19

Factors affecting IBD
The etiology of IBD involves a complex interplay among genetic, 
environmental, and microbial factors (Fig. 1).20 Among the genetic 
factors, human leukocyte antigen (HLA) genes, particularly HLA 
class II molecules like HLA-DRB1-1502 and HLA-DRB1-1501, 
are strongly associated with UC, while HLA-DR4 is linked to CD 
in certain populations. These genes influence immune responses 

by presenting antigens to T cells, playing a critical role in disease 
susceptibility. Ethnic variability and clinical heterogeneity further 
contribute to the diverse genetic associations observed in IBD. 
Polymorphisms in cytokine genes, such as TNFα and LTα in the 
MHC class III region, regulate immune system activity and are 
linked to both UC and CD, although findings are often inconsist-
ent. The interleukin (IL)-1 receptor antagonist gene allele 2 is as-
sociated with increased disease severity in UC and outcomes like 
pouchitis, highlighting its potential role in modulating inflamma-
tion. Family linkage studies also identify genetic predispositions, 
suggesting linkage disequilibrium near disease susceptibility loci. 
Other immune-related genes, such as ICAM-1, complement C3, 
and T-cell receptor genes, show conflicting associations, under-
scoring the complexity of IBD genetics. Collectively, these find-
ings illustrate the intricate interplay between genetic predisposi-
tion and immune dysregulation in the development of IBD.21 
Environmental factors, primarily diet, play a more significant 
role than genetics in shaping the microbiome; however, specific 
genotype–microbiome interactions remain important in IBD. For 
instance, the NOD2 gene variant is associated with an increased 
abundance of Enterobacteriaceae. A subset of microbiome taxa or 
functions, such as oxidative stress resistance, may be more directly 
linked to IBD despite environmental factors driving most micro-
biome variations.22 Given this complex array of influences, it is 
crucial to investigate the interplay among these factors for a more 
detailed understanding of the causes and potential treatments. This 
review discusses the gut microbiome and metabolome in detail, as 
well as their integration with immune-related biomarkers in IBD.

Microbiome signatures in IBD
The microorganisms, including a variety of bacteria, fungi, and 
viruses, in the lower GI tract form an enormous and complex eco-
system.23 Beyond changes in the gut bacteriome of IBD patients, 
recent studies have reported remarkable alterations in the gut my-

Fig. 1. Integrated view of the factors associated with IBD. IBD, inflamma-
tory bowel disease.
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cobiome and virome.23 This suggests that non-bacterial microbes, 
such as fungi and viruses, might also play unique and important 
roles in IBD pathogenesis and disease activity. Most gut microbes 
are beneficial and exert immunoprotective effects by regulating 
host immune cells. However, due to disease conditions or imbal-
ances in the host system, alterations in the gut microbial ecosystem 
may occur, leading to microbial dysbiosis. Such disruptions may 
contribute to chronic intestinal inflammation and impaired gut bar-
rier function, as seen in IBD. In this context, there is a shift in 
microbial populations, alongside inflammation or infection caused 
by contact between microbes and the damaged intestinal lining.24 
Microbial dysbiosis has been demonstrated in both UC and CD.23

Compared to healthy individuals, the structure of the gut mi-
crobiota is significantly altered in IBD across different taxonomic 
levels.25 Changes in gut microbiota composition can occur early 
in IBD development.26 Thus, both diversity and composition of 
the gut microbiota are critical factors in disease progression. IBD 
significantly impacts alpha and beta diversity of the gut microbi-
ome—where alpha diversity refers to diversity within local com-
munities (habitats), and beta diversity refers to the spatial varia-
tion in species composition between communities.27 Studies show 
that patients with IBD exhibit reduced alpha diversity compared to 
healthy controls.28 This reduction renders the microbiota function-
ally less capable and less redundant, thereby increasing vulnerabil-
ity to perturbations.29

Gut bacteria
More than 99% of the healthy gut bacteriome consists of species 
from four phyla: Firmicutes, Bacteroidetes, Proteobacteria, and 
Actinobacteria.23 In IBD, there is a significant reduction in benefi-
cial bacteria such as Faecalibacterium prausnitzii (F. prausnitzii) 
and members of the Ruminococcaceae family,30,31 with the excep-
tion of Ruminococcus gnavus,32 members of the Leuconostocaceae 
family,30 and Bifidobacterium species (Table 1).32–68 Conversely, 
pathogenic bacteria such as Campylobacter concisus, enterotoxi-
genic Bacteroides fragilis, Escherichia coli (E. coli), Bacteroides 
fragilis, Fusobacterium nucleatum, and Mycobacterium avium 
subspecies paratuberculosis are increased.35

Short-chain fatty acids (SCFAs), produced by gut microbiome 
members, are important for GI tract homeostasis.69 The associa-
tion between SCFAs and IBD was suggested when alterations in 
associated microbiota, such as Bifidobacteria, were observed to 
affect SCFA levels.33 In UC patients, a reduction of Bifidobacte-
ria in the colon was observed, which is an important SCFA pro-
ducer.34,70 SCFAs and gut microbiota in IBD influence reactive 
oxygen species, whose increased levels can damage the mucosal 
layer of the GI tract.71 This damage may increase intestinal perme-
ability, resulting in a leaky gut. Microbes such as Streptococcus, 
Bifidobacterium, and Lactobacillus, often administered as probiot-
ics, help inhibit reactive oxygen species production and maintain 
a healthy intestinal microbiota.72 Disturbances in gut microbiota 
composition and reduced fermentation of dietary fibers in IBD 
might lead to altered SCFA profiles.71 In a study of IBD patients, 
reduced tryptophan metabolism was observed, presumed due to 
altered bacterial communities.73 Dysbiosis in IBD is marked by an 
increase in Enterobacteriaceae,74 facultative anaerobes that utilize 
electron acceptors, such as nitrate, to generate energy. These taxa 
may impair gut barrier function through inflammatory cytokine 
production. Consequently, increased Enterobacteriaceae alter bile 
acid metabolism and decrease tight junction integrity, resulting in 
loss of impermeability in the intestinal epithelium.36 The benefi-

cial bacterium Lactobacillus is decreased in IBD and has shown 
anti-inflammatory effects in mouse models.75 In CD, a lower abun-
dance of F. prausnitzii signals potential intestinal health issues in 
adults.76 F. prausnitzii plays an essential physiological role by 
providing mucosal protection and anti-inflammatory functions.76 
Gut bacterial signatures have been employed as biomarkers, dem-
onstrating associations with mucosal state and related symptoms 
in UC patients.77 Certain bacteria, such as Enterobacteriaceae, 
Klebsiella, and some Lachnospiraceae species, are more abundant 
in UC patients experiencing symptoms like frequent bowel move-
ments.77

Probiotic administration has shown beneficial effects on gut 
microbiota and therapeutic benefits in various diseases. For exam-
ple, rectal infusion of Lactobacillus reuteri ATCC 55730 improved 
mucosal inflammation in pediatric patients with distal active UC 
and altered cytokine expression involved in IBD pathogenesis.78 
Another study found that administration of Lactobacillus del-
brueckii and Lactobacillus fermentum decreased inflammatory cy-
tokines, suggesting probiotics may help prevent UC.79 The major 
anaerobic bacterial species in the colon, Bacteroides, is reduced in 
UC; however, administering Lactobacilli and Bifidobacteria prior 
to experimental UC induction helped stabilize Bacteroides levels, 
reducing inflammation and tissue damage.80 A correlation between 
gut bacterial composition and potential future development of CD 
was revealed using ML techniques, implying a role for gut bacteria 
in disease pathogenesis. Based on this, a microbiome risk score 
was developed, assigning risk scores to individuals based on their 
gut bacterial profiles, particularly in healthy first-degree relatives 
of CD patients.81 These studies demonstrate the potential for using 
microbial profiles as distinctive markers. By longitudinally track-
ing changes in these microbial signatures, researchers may predict 
disease flares or treatment responses.

Extracellular vesicles (EVs) in IBD
EVs are tiny spheres enclosed by lipid bilayers that play a crucial 
role in the release and transport of various substances, including 
carbohydrates, lipids, cell wall components, proteins, DNA, RNA, 
and signaling molecules.82 Intestinal EVs engage in direct or indi-
rect interactions with immune cells, intestinal epithelial cells, and 
the gut microbiota, actively participating in the regulation of anti-
inflammatory responses, restoration of mucosal barrier integrity, 
and reconstitution of microbiota composition.83 EVs are released 
by various types of cells, such as intestinal epithelial cells, immune 
cells (including macrophages, T cells, B cells, NK cells, polymor-
phonuclear neutrophils, and dendritic cells), and the microbio-
ta.83–85 EVs derived from intestinal epithelial cells maintain gut 
homeostasis and modulate immune responses.83 EVs from T cells 
are involved in intercellular communication and immune modula-
tion.85 EVs from B cells also contribute to immune responses.86 
By stimulating macrophages, EVs containing inflammasomes 
can activate the NF-κB pathway, thereby amplifying inflamma-
tory signaling.87 EVs derived from the microbiota can influence 
host immune responses and inflammation.88 Several mechanisms 
of EV release have been described and warrant further study. For 
example, plasma membrane budding involves the direct outward 
budding of the plasma membrane and requires GTPases and the 
ESCRT complex.84 EVs can also be released through the fusion 
of plasma membranes with multivesicular bodies, leading to the 
release of exosomes.84 Another mechanism is calcium-dependent 
release, in which calcium functions as a second messenger and 
regulator of EV secretion.89 EVs facilitate intercellular commu-
nication by carrying a variety of bioactive molecules, including 
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Table 1.  Organisms of the gut microbiome, their metabolites, and the immune factors they affect

Microbiome list

Gut bacteria in IBD

Bacteria Abundance Associated 
metabolite

Metabolite 
levels

Effect on immune component References

F. prausnitzii Decrease Butyrate Decrease Th17/Treg balance disrupted. Blocks 
IL-6/STAT3/IL-17 pathway and 
promotes pro- inflammatory effect

37,38

Enterobacteriaceae Increase LPS Increase Reduced IL-10. Increased IL-8, tumor 
necrosis factor (TNF)-α, and IL-1β

36

Lactobacilli Decrease Indole-3-lactic acid Decrease Impairs CD8+ T cells and IL-12a production 39–41

Exopolysaccharides 
(EPS)

Decreases Increased pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6). Decreased 
anti-inflammatory cytokines (IL-10)

Conjugated 
linoleic acid

Decrease Production of colonic IL-6 and TNF-α

Bifidobacteria Decrease Indole-3-lactic acid Decrease Increased production of IL-8 and TNF-α, 
and pro-inflammatory cytokines

42,43

Flavobacterium Decrease Citric acid Decrease Production of TNF-α, IL-6, IL-12 and 
promotion of pro- inflammation

44,45

Trimethylamine-
N-oxide (TMAO)

Increase Impacts ATG16L1-induced autophagy. Activates 
NLRP3 inflammasome. Promotes inflammation

44,46

Bacteroidetes Decrease SCFA Decrease Reduced Treg cells 47

E. coli Increase LPS Increase Increased IL-8 and other pro-
inflammatory cytokines

35,48,49

Mycobacterial species Increase SCFA Decreases Reduced suppression of NF-κB; Reduced 
activation of inflammasomes; Reduced 
Treg cells. Reduction in anti-inflammatory 
mediators (TGF-β and IL-10)

35,50,51

Anaerostipes Decrease Butyrate Decreases Increase in NF-κB-induced pro-
inflammatory cytokines TNFα and IL6

52,53

Methanobrevibacter Decrease Methane Decreases Increases IL-6, TNF-α, IL-1β, IFN-γ, NF-κB 54–56

Christensenellaceae Decrease Acetate, Butyrate Decreases Increase in IL-8, NF-κB activation 57

Ruminococcus gnavus Increase Glucorhamnan 
polysaccharide

Increases Increases TNFα 32

Prevotella copri Decrease Valerate and 
other SCFA

Decreases Increases TNFα 58–61

Clostridium leptum 
group (IV)

Decrease Butyrate Decreases Reduced Treg differentiation. Reduced 
IL-22 production. Promotes inflammation 
through LPS-induced NF-kβ activation. 
Increased pro-inflammatory factors

62,63

Gut mycobiome in IBD

C. albicans Increase SCFA Decrease Increases IL-17 and IL-23 production 64,65

Malassezia Increase FFAs such as oleic 
acid, cell wall 
carbohydrates, 
indoles

Increase Increase production of IL-17 IL-18, IL-
8, and IL-6 and Th22 chemokines

64,66

Kluyveromyces Decrease β-glucan Decreases Reduction in Treg and IL-10 64,67,68

IBD, inflammatory bowel disease; LPS, lipopolysaccharide; SCFA, short-chain fatty acids; EPS, exopolysaccharides; TMAO, trimethylamine-N-oxide; FFAs, free fatty acids; Th17, T-
helper 17 cells; Treg, regulatory T cells; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-12, interleukin-12; IL-12a, interleukin-12 subunit alpha; IL-17, interleukin-17; 
IL-18, interleukin-18; IL-22, interleukin-22; IL-23, interleukin-23; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; TGF-β, transforming growth factor-beta; STAT3, sig-
nal transducer and activator of transcription 3; NF-κB, nuclear factor kappa B; ATG16L1, autophagy-related 16 like 1; NLRP3, NLR family pyrin domain containing 3 (inflammasome).
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nucleic acids, proteins, lipids, and metabolites, which can initiate 
intracellular signaling pathways.90,91 These cargoes can include 
tricarboxylic acid (TCA) cycle intermediates, steroid hormones, 
sterols, enzymes, signaling proteins, surface receptors, mRNAs, 
microRNAs (miRNAs), sphingolipids, and phospholipids. EVs 
can also elicit responses in recipient cells by initiating intracellular 
signaling pathways.90,91

Recent studies have found that circulating miRNAs contained 
in EVs are small, non-coding RNA molecules that can serve as 
biomarkers for diseases.92 In the context of IBD, miRNAs are of 
particular interest as potential biomarkers. For example, elevated 
expression of circulating miRNAs has been detected in EVs iso-
lated from the serum, plasma, or peripheral blood of individuals 
with IBD.93 Proteomic analyses comparing EVs from individuals 
with IBD and healthy controls have identified certain proteins, 
including ANXA1 and PSMA7, that are enriched in the EVs of 
IBD patients.94,95 Notably, levels of EV-associated PSMA7 were 
found to be lower in IBD patients in remission compared to those 
with active disease, highlighting the potential utility of EV-based 
biomarkers for monitoring disease progression in IBD.95 By ad-
dressing various aspects, such as release mechanisms, signaling 
pathways, and the role of EVs as biomarkers, a comprehensive 
understanding can be developed of how EVs contribute to the 
pathophysiology of IBD.

Gut virome
Viruses are increasingly recognized as integral components of the 
human microbiome, serving diverse ecological functions, includ-
ing preying on bacteria, stimulating the immune system, facilitat-
ing genetic diversity, enabling horizontal gene transfer, fostering 
microbial interactions, and enhancing metabolic processes.96 The 
interaction between bacteria and viruses in the gut highlights the 
role of viruses in maintaining gut equilibrium and influencing path-
ological states.97 The healthy human gut virome includes members 
of the Malgrandaviricetes (spherical ssDNA) and Caudoviricetes 
(tailed dsDNA) phage classes.98 Although the bacterial hosts of 
many of these viruses remain largely unidentified, Caudoviricetes 
are presumed to infect a diverse array of bacterial phyla, including 
Bacteroidetes, Verrucomicrobia, Proteobacteria, Firmicutes, and 
Actinobacteria.99

Recently, important associations have been observed between 
the gut virome and IBD. Virome dysbiosis has been implicated 
in IBD pathogenesis, with elevated levels of phages infecting 
Clostridiales, Alteromonadales, and Clostridium acetobutylicum 

detected in individuals with IBD compared to healthy subjects.100 
A study on Chinese cohorts of IBD patients and healthy controls 
identified 139 IBD-associated viral OTUs, noting a higher abun-
dance of the Retroviridae family in IBD patients101 Additionally, 
IBD patients showed increased evenness and richness in their eu-
karyotic virome compared to healthy controls. Genomoviridae and 
Retroviridae were two eukaryotic viral families found to be en-
riched in IBD patients. In contrast, the prokaryotic virome in IBD 
patients displayed significantly decreased diversity. Families such 
as Siphoviridae and Myoviridae were enriched in patients, while 
crAss-like phages and Quimbyviridae were decreased. At the OTU 
level, numerous IBD-enriched Siphoviridae and Myoviridae viral 
OTUs were identified, which infect bacteria such as Escherichia, 
Klebsiella, and other opportunistic pathogens known to induce in-
flammation and trigger disease. Moreover, fecal virome transplan-
tation in mouse models has shown that colonization by these IBD-
associated viruses can modulate experimental colitis.101 However, 
more comprehensive and focused research is required to achieve a 
detailed understanding of the virome’s role in IBD (Table 2).101–104

Gut mycobiome
Fungi make up approximately 0.1% of the gut microbiome and 
have been identified in the GI tract of around 70% of healthy indi-
viduals. They interact with both viruses and bacteria in the gut, ex-
hibiting antagonistic and synergistic relationships.105 The healthy 
human GI tract mycobiome is primarily composed of three major 
phyla: Basidiomycota, Ascomycota, and Chytridiomycota.105 Dys-
biosis in the fungal community plays a crucial role in IBD by al-
tering gut microbiota composition or promoting the production of 
pro-inflammatory cytokines.106 A distinctive feature of IBD is an 
increased Basidiomycota-to-Ascomycota ratio (Table 3).64,66,107–110 
An increase in the abundance of fungi such as Candida species, 
which can exacerbate inflammation, and a decrease in Saccha-
romyces have been observed in IBD cases.108–110 Another report 
indicated elevated abundances of Sterigmatomyces, Aspergillus, 
Candida, and Wickerhamomyces, along with lower abundances 
of Penicillium, Exophiala, Alternaria, Acremonium, Trametes, 
Epicoccum, and Emericella in patients with UC.111 In a clini-
cal study involving colon biopsies from 10 IBD patients and 18 
healthy controls, Pseudomonas was elevated, and the opportun-
istic pathogen Malasseziales was found to be the most abundant 
in UC. An increased Basidiomycota-to-Ascomycota ratio was also 
observed in UC compared to CD, due to the higher abundance of 
Malasseziales, which may serve as an indicator of UC.112 Fungal 

Table 2.  Changes in the abundance of the gut virome in IBD

Gut virome Abundance Role References

Myoviridae Increase These are temperate viruses belonging to the order Caudovirales, but their function in 
IBD virome remains mostly unclear

101

Microviridae Decrease Belonging to the order Petitivirales, impacts on bacterial dysbiosis 102

Siphoviridae Increase Temperate viruses belonging to the order Caudovirales, impacts on bacterial dysbiosis 101,103

Quimbyviridae Decrease Role in IBD remains unclear 101

Genomoviridae Increase Belonging to order Geplafuvirales, the role remains unclear 101

Anelloviridae Increase They are useful for reporting reduced immune surveillance and the effectiveness of 
immunosuppression

104

Retroviridae Increase The overgrowth of this family has been linked to several diseases, 
including CD, but its exact role remains unclear

101

IBD, inflammatory bowel disease; CD, Crohn’s disease.
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Table 3.  Changes in the abundance of the gut mycobiome in IBD

Abundance

Increased Decreased References

C. albicans; Malassezia; Filobasidiaceae; D. hansenii; 
Xeromyces; Rhodosporium; Lipomyces; Yamadazyma; 
Yamadazyma friedrichii; Lipomyces doorenjongii

Saccharomyces cerevisae; Saccharomyces 
boulardii; Kluyveromyces; C. tropicalis; Zygomycota; 
Aspergillus; Debaromyces; Cladosporium; 
Microdochium; Phaeosphaeria; A. rubrobrunneus

64,66,107–110

dysbiosis has been shown to promote IBD by enhancing CD4+ T 
cell responses in a mouse model, as well as in human colonic and 
CD4+ T cell samples from healthy donors, UC patients, and CD 
patients. In this report, Candida albicans was found to increase 
pro-inflammatory cytokine production, and slower progression of 
IBD was observed when terbinafine was used to deplete fungi.113

Correlating microbial signatures with disease outcome and 
treatment response
When discussing microbial signatures in IBD, it is important to 
highlight the specific compositional changes in the gut micro-
biota associated with disease activity, progression, and treatment 
response. In patients with IBD, the intestinal microbiota is dys-
regulated compared to that of healthy individuals, showing de-
creased bacterial diversity—particularly reduced abundances of 
Firmicutes and Bacteroidetes—and an increase in Proteobacte-
ria.114 Differences also exist between CD and UC. Patients with 
CD exhibit a higher level of dysregulation, characterized by re-
duced microbial diversity and stability, which can be considered a 
specific signature of CD.115 Microbial biomarkers, such as specific 
bacterial strains or metabolites, can indicate whether a patient is 
likely to respond to a particular treatment. For instance, in pa-
tients with CD treated with the anti-integrin therapy vedolizumab, 
those who achieved remission had a gut microbiome enriched with 
Roseburia inulinivorans and a Burkholderiales species compared 
to non-responders.116 Similarly, in pediatric IBD patients, a higher 
absolute abundance of Bifidobacteriales and a lower abundance of 
Actinomycetales at baseline were associated with a rapid response 
to infliximab therapy.117 Additional studies like these will help us 
better understand the microbial signatures associated with IBD and 
support the development of personalized treatment strategies, ulti-
mately improving patient outcomes.

Metabolome signatures in IBD
The metabolome refers to the pool of small metabolites present 
in a biological sample under specific conditions at a particular 
time.118 Important metabolites include lipids, amino acids, and 
TCA cycle intermediates, among others. A diverse range of biosa-
mples, including easily accessible fluids such as blood, urine, se-
rum, feces, and saliva, as well as less accessible and more invasive 
samples such as organs, tissues, or cells, has been used to identify 
metabolomic markers in IBD.119 These samples provide varying 
degrees of information: for example, urine provides a comprehen-
sive overview of endogenous and exogenous metabolism; stool 
gives insight into digestive metabolism; blood offers a systemic 
perspective; tissue samples provide direct information on localized 
pathology; and less conventional samples like breath may reflect 
dynamic metabolic processes.120

Several studies have reported variations in metabolites from 
different types of biosamples in patients with IBD compared to 
healthy controls. For example, in a large cohort of 117 individuals 

with CD, increased levels of 1-octen-3-ol, 6-methyl-2-heptanone, 
2-piperidinone, and heptanal were observed in fecal samples from 
the active CD group compared to healthy controls. Conversely, 
reduced quantities of methanethiol, 3-methyl-phenol, SCFAs, and 
ester derivatives were observed in CD patients.121 Another study 
found that fecal metabolites could distinguish between UC and 
CD, as well as between healthy controls and UC. Fecal samples 
from CD patients showed enrichment in lactate, succinate, alanine, 
and tyrosine, while UC patients exhibited higher levels of leucine, 
alanine, and tyrosine.122 In yet another study, 53.6% of lipid me-
tabolites were significantly altered in CD compared to controls, 
whereas only five lipid-related metabolites were decreased in UC. 
Both CD and UC exhibited consistent decreases in various fatty 
acids compared to controls. Interestingly, glycerol levels were no-
tably reduced in CD, indicating lipolysis. Essential acylcarnitine 
metabolites were also reduced in CD compared to both UC and 
control groups. Bile acid pathways were significantly altered in 
IBD, with increased primary and secondary bile acids observed 
in CD, while UC displayed reduced primary bile acids and altered 
secondary bile acids. TCA cycle intermediates, including citrate, 
aconitate, α-ketoglutarate, succinate, fumarate, and malate, were 
significantly decreased in CD. Additionally, β-hydroxybutyrate, 
derived from acetyl-CoA, showed the most substantial reduction 
in CD, being 11 times lower than in controls and 18 times lower 
than in UC subjects.123

Metabolic dysfunction is defined as a series of abnormal or 
disrupted metabolic processes occurring in the body, particularly 
those related to energy production, nutrient utilization, or the regu-
lation of various molecules. In IBD, this dysfunction is marked by 
decreased levels of trimethylamine-N-oxide, reduced SCFAs like 
butyrate, lower hippurate levels, and alterations in primary and 
secondary bile acid profiles.120 This dysbiosis can contribute to 
inflammation by influencing metabolic pathways or the immune 
system.124 Several metabolites in the gut are derived from the resi-
dent microbiota. Therefore, microbial dysbiosis is expected to be 
associated with metabolic imbalance. For example, in IBD, there is 
an imbalance in microbial composition, with an increase in Proteo-
bacteria and a decrease in Firmicutes. Thus, the roles of specific 
bacteria, such as E. coli and the butyrate-producing F. prausnitzii, 
become particularly important. This suggests that combining mi-
crobiome and metabolome analyses may provide valuable insights 
for understanding, diagnosing, and treating IBD.120 Supporting 
this idea, Lijun Ning et al. (2023) identified unique biomarkers 
related to IBD that consist of specific gut bacteria and metabolites. 
These biomarkers are expected to have a low likelihood of being 
incorrectly identified in both GI and non-GI diseases, suggesting 
their potential as valuable disease-specific markers for IBD with 
diagnostic utility.125

Metabolomic profiling has also proven valuable in predicting 
treatment responses in IBD patients by identifying specific me-
tabolites associated with therapeutic outcomes. Key metabolites 
such as bile acids, glycine, linoleic acid, N-acetylserotonin, and 
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methylglutaric acid have been linked to responses to therapies 
like anti-TNF and infliximab, with distinct profiles observed be-
tween responders and non-responders. Notably, bile acids, along 
with urinary cysteine and bile acids measured in various bodily 
fluids, have emerged as potential indicators of treatment efficacy. 
Furthermore, fecal lipid profiles have shown higher predictive ac-
curacy than serum profiles. These findings emphasize the potential 
of metabolomic analyses, particularly of fecal samples, to enhance 
personalized treatment strategies and improve understanding of 
IBD’s metabolic alterations.126

To explore metabolite profiles, it is essential to implement high-
ly sensitive techniques for metabolomics analysis. The two key 
analytical techniques used in metabolomics are nuclear magnetic 
resonance (NMR) spectroscopy and mass spectrometry (MS). 
NMR provides insights into metabolite structure and concentra-
tion by detecting energy changes in nuclei under a magnetic field. 
It includes 1D-NMR, which is commonly used in high-throughput 
studies, and 2D-NMR, which resolves overlapping peaks for com-
plex metabolite characterization using techniques such as COSY 
and TOCSY.127 While NMR faces limitations such as low sensitiv-
ity and overlapping proton peaks, it is expected to remain a vital 
tool in healthcare for at least the next decade due to advantages 
including minimal sample preparation, high reproducibility, and 
the ability to analyze an entire sample in a single measurement.128

MS, on the other hand, measures the mass-to-charge ratio (m/z) 
of ionized metabolites, offering high sensitivity and specificity. 
MS is often coupled with chromatographic separation (e.g., liq-
uid chromatography-MS or gas chromatography-MS) to reduce 
sample complexity and improve accuracy.127 However, structural 
elucidation in untargeted analyses presents significant challenges, 
particularly with stability and reproducibility during large-scale 
sample runs using untargeted liquid chromatography-MS. These 
issues underscore the need for advancements that enhance repro-
ducibility and improve the accuracy of structure elucidation.128

In IBD research, untargeted metabolomics is particularly valu-
able as it captures a holistic metabolic profile without predefined 
targets. The workflow includes spectral processing to generate 
metabolic features, data analysis to explore associations with phe-
notypic traits, biomarker discovery for diagnostics, and pathway 
analysis to connect metabolites with biological processes. Ad-
vanced bioinformatics tools are essential for managing the com-
plexity of metabolomics data, enabling multi-omics integration, 
and identifying biomarkers and pathways relevant to IBD. Togeth-
er, these techniques provide a comprehensive understanding of 
disease mechanisms and support the development of personalized 
therapeutic strategies.129

Immunological biomarkers in IBD
The need for precise diagnostic tools and effective treatment strat-
egies for IBD highlights the importance of immunological bio-
markers. Intensive research aimed at identifying these biomarkers, 
coupled with the vast amount of related data being generated, now 
enables speculation about the dynamics between immunological 
components and the gut microbiome. Understanding how dys-
biosis in the gut microbiome can affect the regulation of various 
immune system components is crucial for elucidating the mecha-
nisms by which the disease progresses. Numerous studies have 
identified different immunological biomarkers, including various 
types of T cells, receptors, antibodies, ILs, and cytokines. These 
biomarkers can be classified according to their clinical applica-
tions: diagnosis, prognosis prediction, and treatment monitoring.

Diagnosis
Immunological biomarkers are essential for the accurate diagnosis 
of IBD, helping to differentiate it from other GI disorders, particu-
larly in cases where clinical symptoms are ambiguous. Specific 
biomarkers, such as anti-Saccharomyces cerevisiae antibodies and 
perinuclear anti-neutrophil cytoplasmic antibodies, are commonly 
used to distinguish between CD and UC, respectively.130 These 
markers provide less invasive diagnostic options and complement 
traditional methods like endoscopy. Elevated levels of pro-inflam-
matory cytokines, including IL-1β and IL-8, have been identified 
in IBD patients, aiding in the identification of active inflammation. 
IL-1β is a biomarker noted for its elevated levels in the serum of 
patients with IBD, in those experiencing relapse, and in pediatric 
cases.131,132 IL-1β alone is not capable of exacerbating IBD, but 
its effect is mediated through fluctuations in the levels of inflam-
masomes like NLRP3, an important source of mucosal IL-1β.133 
Lower levels of the NLRP3 inflammasome, and consequently low-
er levels of IL-1β, lead to a decreased state of colitis in mice.134 
Furthermore, in mice, aggravated intestinal inflammation is linked 
to bacterial members of the genus Prevotella, mainly Prevotella 
intestinalis, which can reduce the production of SCFAs, especially 
acetate.135 Interestingly, acetate is now known to suppress NLRP3 
inflammasome-mediated production of IL-1β.136 From these stud-
ies, it can be understood that in severe cases of intestinal inflam-
mation, Prevotella species reduce acetate production, which in 
turn increases IL-1β production and promotes inflammation. Simi-
larly, IL-8 levels are elevated in the serum of patients with IBD 
relapse and in pediatric cases.131,132 The increase in IL-8 levels in 
CD and UC can be explained by the higher abundance of various 
Enterobacteriaceae, such as E. coli, and the reduced abundance of 
Bifidobacteria and Lactobacillus species in the gut.137–139 A study 
using IBD isolates showed that flagellin shed by mucosa-associ-
ated E. coli induces IL-8 expression through a MAPK-dependent 
pathway.139 Bifidobacterium species are also known to bind and 
neutralize lipopolysaccharides (LPS) from E. coli, which, if not 
neutralized, can lead to LPS-induced increases in IL-8 levels.140 
It is possible that due to the increased levels of E. coli and lower 
levels of Bifidobacteria, LPS produced by E. coli is not effectively 
neutralized, leading to more LPS-induced IL-8 production. Bifido-
bacterium is also an SCFA-producing bacterium, and these SCFAs 
exert an anti-inflammatory effect by blocking the NF-κB signaling 
pathway. Thus, low levels of Bifidobacteria in IBD, and conse-
quently lower production of SCFAs, can result in increased pro-
inflammatory consequences.33

Similarly, an experiment in IBD patients demonstrated that an 
increase in Lactobacillus species, and thus increased butyric acid 
production, leads to decreased levels of IL-8 and other pro-inflam-
matory molecules.141 From this, we can infer that lower levels of 
Lactobacillus may contribute to elevated IL-8 levels. Dysbiosis 
in the gut microbiome, characterized by altered levels of bacterial 
species such as Prevotella intestinalis and E. coli, further influ-
ences the production of these cytokines, reinforcing their diagnos-
tic relevance.

Prognosis prediction
Immunological biomarkers are instrumental in predicting the pro-
gression of IBD and identifying patients at risk for severe disease 
or complications. For instance, Oncostatin M (OSM), which be-
longs to the IL-6 family of cytokines, has been shown to be an 
important biomarker in IBD.142 It is rapidly released during de-
granulation and can initiate other signaling pathways, such as the 
JAK-STAT and PI3K-Akt pathways, which promote disease pro-
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gression.142 Mucosal OSM levels have been found to be upregulat-
ed in patients newly diagnosed with IBD and in those experiencing 
relapse, even after surgery.142 High levels of OSM have been iden-
tified in patients with both CD and UC, and have also been shown 
to predict non-responsiveness to anti-TNFα therapy.143 Dysbiosis 
in CD has been associated with a decreased abundance of Rose-
buria intestinalis, a gut microbiome member, and reduced levels of 
this species are linked to increased OSM levels in CD patients.144 
Interestingly, normal R. intestinalis abundance can suppress intes-
tinal inflammation by downregulating pro-inflammatory cytokines 
and increasing anti-inflammatory cytokines and regulatory T cells 
(Tregs).144 This effect can be explained by the fact that R. intes-
tinalis is an SCFA-producing bacterium capable of synthesizing 
butyrate, which has multiple effects on immune regulation, includ-
ing promoting the proliferation of Tregs.145 From this, it can be un-
derstood that in IBD, dysbiosis results in decreased R. intestinalis 
abundance, leading to reduced butyrate production, downregula-
tion of Tregs and anti-inflammatory factors, and upregulation of 
pro-inflammatory mediators, including OSM.

Treatment monitoring
Biomarkers also play a critical role in monitoring treatment re-
sponse and guiding therapeutic decisions in IBD. A recent study 
was performed to identify IBD remission- or relapse-specific bio-
markers. A list of ILs, cytokines, and other immunological factors, 
including Galectin-1, IL-15, IL-21, IL-25, IL-13, IFN-β, CXCL11, 
CXCL9, CXCL10, and G-CSF, whose levels are elevated in pa-
tients with relapse.132 The possibility that higher levels of IL-15 
could result from changes in the levels and composition of the Bac-
teroidetes and Firmicutes phyla, as well as decreased abundance of 
butyrate-producing bacteria (leading to reduced butyrate and other 
SCFA levels), has already been highlighted.146 The link between 
lower levels of butyrate and other SCFAs with elevated IL-15 
levels may be similar to the mechanisms observed for IL-8 and 
IL-1β. An experiment performed on patients with hepatocellular 
carcinoma showed that increased levels of gram-negative bacteria 
and decreased levels of gram-positive bacteria, such as Firmicutes, 
are associated with elevated IL-25 levels.147 The increased levels 
of IL-25 observed in IBD may similarly result from dysbiosis. In 
IBD, significantly higher levels of the bacteriophage Caudovirales 
have been observed; combined with bacterial infection (where 
these phages replicate within bacteria), this can trigger pro-inflam-
matory effects, heightened T cell immune responses, and IFN-β 
production, while suppressing phagocytosis and TNF production, 
thereby maintaining gut inflammation.148 It is now known that 
CXCL9, CXCL10, and CXCL11 have strong bactericidal activity, 
and their increased levels may be linked to the higher abundance of 
E. coli in IBD, potentially resulting in infections by bacteria such 
as Listeria monocytogenes and Bacillus anthracis.149–151

Another study of CD and UC patient samples using mass cytom-
etry identified immunological molecules characteristic of IBD sam-
ples, including CXCR3+ plasmablasts, HLA-DR+CD38+ T cells, and 
IL1B+ macrophages and monocytes. Specifically in UC samples, el-
evated IL17A+ CD161+ effector memory T cells, HLA-DR+CD56+ 
granulocytes, and reduced type 3 innate lymphoid cells were ob-
served. In CD samples, IL1B+ dendritic cells, IL1B+TNF+IFNG+ 
naïve B cells, IL1B+HLA-DR+CD38+ T cells, and IL1B+ plasmacy-
toid dendritic cells were identified.152 How gut dysbiosis influences 
the levels of these immune components is not yet fully understood 
and warrants further exploration. Much remains unknown about 
how changes in the abundance and composition of the gut microbi-
ome lead to higher levels of these biomarkers.

Integration of the gut-microbiome, metabolome, and immu-
nological aspects in IBD
The sections thus far have discussed three types of biomarkers—
the gut microbiome, the gut metabolome, and immunological bio-
markers—independently. However, it is important to consider the 
interplay between gut dysbiosis, alterations in metabolite levels, 
and the consequent increase in pro-inflammatory factors and re-
duction of anti-inflammatory factors. As already established, IBD 
is characterized by gut dysbiosis, which constitutes the first group 
of biomarkers. This imbalance in the abundance of different gut 
microbiota leads to a corresponding imbalance in the levels of 
various associated metabolites. Broadly, SCFAs and LPS repre-
sent two common groups of metabolites whose levels decrease 
and increase, respectively, due to gut dysbiosis, forming the sec-
ond group of biomarkers. Various cytokine levels are affected by 
these changes in metabolite concentrations. The cytokines whose 
levels change significantly and form the third group of biomarkers 
include IL-12, IL-10, IL-8, IL-6, IL-1β, and TNF-α. An overall 
representation of this integrated concept of the three biomarkers 
is shown in Figure 2. This concept can be further illustrated by 
examining F. prausnitzii, whose abundance in the gut decreases in 
IBD. This bacterium is a major butyrate producer, and its reduced 
abundance leads to a corresponding decrease in butyrate levels.153 
Butyrate, an SCFA, impacts the host immune system, supporting 
the observation that reduced butyrate levels disrupt the Th17/Treg 
balance. It also inhibits the IL-6/STAT3/IL-17 pathway and pro-
motes pro-inflammatory effects, ultimately exacerbating the dis-
ease.144 This is just one example of a mechanism linking all three 
types of biomarkers seen in IBD. Other such mechanisms can be 
similarly understood from Table 1 and are visually summarized in 
Figure 3. Considering the interactions mentioned above and those 
outlined in Table 1, it may be hypothesized that: i) alterations in 
gut microbiome composition directly or indirectly influence the 
production of immunological biomarkers in IBD patients; ii) the 
metabolomic signatures associated with dysbiosis in IBD corre-
late with specific immunological responses and disease severity; 
and iii) modulating the gut microbiome may lead to measurable 
changes in both immunological biomarkers and metabolomic pro-
files, resulting in improved clinical outcomes for IBD patients. 
The interplay between the gut microbiome, metabolome, and 
immune factors in IBD presents numerous complexities and un-
resolved questions. One significant uncertainty lies in the causal 
relationships between specific microorganisms, metabolites, and 
immune responses. While associations have been established, the 
directionality of these relationships remains unclear. For instance, 
it is uncertain whether dysbiosis leads to altered immune responses 
or if inflammation modifies microbiome composition. Alterations 
in metabolite profiles, as discussed above, have been observed in 
IBD patients, yet the specific metabolic pathways affected and 
their implications for immune function are not fully elucidated. 
The role of metabolites produced by gut bacteria in modulating 
immune responses involves complex interactions that warrant 
further investigation. Individual variability in immune responses 
to microbial and metabolic signals further complicates our under-
standing of pathogenesis. Factors such as genetics, environmental 
influences, and prior exposures can significantly affect how the 
immune system interacts with the microbiome. To address these 
uncertainties, several research methods and technical approaches 
could be employed. Conducting longitudinal studies that track 
changes in microbiome composition, metabolomic profiles, and 
immunological biomarkers over time could help establish causal 
relationships. This approach would allow researchers to observe 
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how shifts in one domain influence the others. Utilizing an inte-
grative multiomics approach (combining genomics, transcriptom-
ics, proteomics, and metabolomics) can provide comprehensive 
insights into the interactions between microorganisms, metabo-
lites, and immune factors. Advanced computational models could 
analyze this data to identify key pathways involved in IBD patho-
genesis. Developing animal models that mimic human IBD can 
facilitate controlled experiments to test specific hypotheses about 
microbial influence on immune responses. For example, germ-
free mice could be colonized with specific bacterial strains to ob-
serve subsequent changes in immune activation and metabolite 
production. Designing clinical trials that monitor immunological 
biomarkers alongside microbiome and metabolome changes dur-
ing treatment could provide insights into how therapies influence 
these interactions. This could lead to personalized treatment strat-
egies based on individual biomarker profiles. These uncertainties 
need to be addressed through targeted research methods to deepen 

our understanding of IBD pathogenesis and potentially uncover 
new therapeutic targets for managing this complex disease.

AI-ML-based advancements
As our understanding of IBD progresses and we strive to enhance 
clinical trial outcomes and treatment goals, AI and ML have 
emerged as promising tools to improve diagnostic processes and 
treatment outcomes. Various ML algorithms, such as Random 
Forest and Support Vector Machines, have demonstrated effi-
cacy in predicting patient responses to therapies and assessing 
disease severity.8 These algorithms utilize high-dimensional data 
ranging from clinical genomics to microbiome data, enabling a 
better understanding of individual patient profiles. A study pro-
poses the Holistic AI in Medicine framework, which uses multi-
modal inputs such as tabular data, time series, text, and images 
to enhance predictive modeling in healthcare. The integration of 

Fig. 2. Dynamics between gut microbiome, metabolome, and immunological components in IBD. Created with Biorender.com. IBD, inflammatory bowel 
disease; SCFA, short-chain fatty acids; LPS, lipopolysaccharide; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-12, interleukin-12; TNF-α, tu-
mor necrosis factor-alpha; IL-1β, interleukin-1 beta.
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multimodal data using AI techniques has been shown to improve 
diagnostic accuracy.154 However, many challenges remain unre-
solved in this field. One major issue is the lack of diversity in 
patient samples, which can lead to biased predictions. This high-
lights the need to develop robust AI models that generalize well 
across populations. Research has shown that AI models trained 
predominantly on data from specific demographics can result in 
imbalances in healthcare outcomes, with less accurate algorithms 
for underrepresented racial or ethnic groups.155 Moreover, the 
increasing applications of AI in managing IBD present exciting 
prospects. AI may not only predict how individuals respond to 
biological therapies but also contribute to refining the standard 
of care. This sets the groundwork for personalized treatment in 
the future, with the potential to reduce costs and improve overall 
disease management.156 The integration of AI in the treatment 
and diagnostics of IBD offers significant potential for enhanc-
ing patient care through improved and personalized strategies. 
To recognize and address these challenges, future research must 
focus on validating AI systems in real clinical environments us-
ing diverse data to optimize the models.

Future research directions
Future research on understanding IBD should focus on conducting 
large-scale longitudinal studies to explore the intricate relation-
ships between immunological biomarkers, the microbiome, and 
the metabolome.157 These studies should aim to recruit a diverse 
cohort of participants, including those diagnosed with CD and UC, 
alongside healthy controls for baseline comparisons. Inclusion cri-
teria must consider age diversity and disease duration to effective-
ly evaluate temporal changes in biomarkers, with a target sample 
size of 500–1,000 participants to ensure robust data analysis.

The study design should adopt a prospective cohort framework, 
facilitating data collection at multiple time points, such as baseline, 
six months, and annually thereafter. Regular follow-ups will be es-
sential for gathering biological samples (blood and feces) and clini-
cal data, including symptom diaries and medication use. An inter-
vention group receiving dietary modifications or probiotics could 
provide valuable insights into their impact on biomarkers over time.

Data collection methods must encompass comprehensive biolog-
ical sampling for immunological analysis and microbiome sequenc-
ing, alongside standardized clinical assessments to evaluate disease 

Fig. 3. Visual representation of the interactions between gut microbiome, metabolome, and immunological markers summarized from Table 1 and Table 
2. Created with Biorender.com. Text in red and green indicates a decrease and increase in levels, respectively. SCFA, short-chain fatty acids; FFA, free fatty 
acids; LPS, lipopolysaccharide; IL-10, interleukin-10; Treg cells, regulatory T cells; IL-1β, Interleukin-1 beta; IL-8, interleukin-8; IL-17, interleukin-17; NF-κB, 
nuclear factor kappa B; TNF-α, tumor necrosis factor-alpha.
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activity. Advanced statistical analyses and ML approaches will be 
crucial for identifying patterns that predict disease flares or treat-
ment responses based on microbiome and metabolomic changes.158 
Ethical considerations are paramount; thus, obtaining informed con-
sent and ethics approval from relevant boards is essential. Finally, 
dissemination of findings through publication in peer-reviewed jour-
nals and engagement with healthcare providers will enhance aware-
ness of potential biomarkers and their clinical relevance.159 By im-
plementing these structured strategies, researchers can gain valuable 
insights into the complex dynamics of IBD, ultimately informing 
future therapeutic strategies and improving patient outcomes.

Conclusions
In this review, we have summarized biomarkers of IBD with a major 
focus on signatures in the gut microbiome. We discussed the charac-
teristic variation in the levels of different organisms in the gut, how 
this variation causes fluctuations in the levels of metabolites pro-
duced by these organisms, and finally, how the imbalance of these 
metabolites can induce altered levels of various immune system 
components. Thus, this review provides a comprehensive outlook on 
microbial, metabolic, and immunological signatures and their inter-
relations. Although extensive research is being conducted to identify 
biomarkers for IBD, the ones identified so far are not ideal. Most 
reported biomarkers are invasive, lack specificity to IBD, and are 
not highly sensitive. Moreover, biomarkers reported across different 
studies are inconsistent due to variations in study protocols, sample 
sizes, populations, environmental influences, experimental bias, and 
other factors. This implies that there is no standardized panel of bio-
markers that can be universally applied across all populations and 
stages of IBD. The biomarkers known so far need to be validated 
through longitudinal studies across diverse, larger populations using 
various study designs and heterogeneous patient samples. This will 
help establish standard biomarkers usable in all IBD cases. These bi-
omarkers can then be used for timely prognosis, accurate diagnosis, 
and can also inform personalized treatment strategies for patients.
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